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FREE-SPACE OSCILLATING PRESSURES NEAR THE TIPS OF ROTATING PROPELLERS

By Harver H. HueBARD and ArRTEUR A. REGIER

SUMDMARY

The theory 1s given for calculating the free-space oscillating
pressures associated with a rotating propeller, at any point in
space. Because of its complexity this analysis is conrenient
only for use in the eritical region near the propeller tips where
the assumptions used by Guiin to simplify his final equations
are not valid. Good agreement was found between analytical
and experimental results in the tip Alach number range 0.45 to
1.00 where static tests were conducted. Charts based on experi-
mental data are included for the fundamental frequencies of
two-, three-, four-, fire-, six-, and eight-blade propellers and for
a range of tip clearances from 0.04 to 0.30 times the propeller
diameter. If the power coefficient, tip Mach number, and the
tip clearance are known for a given propeller, the designer may
determine from these charts the average maximum free-space
aseillating pressure in the critical region near the plane of rota-
tion. A section of the present report is deroted to the fuselage
response to these oseillating pressures and indicates some of
the factors to be considered in solring the problems of fuselage
vibration and noise.

Pressures in the region ahead of the plane of rotation tended
to be out of phase with those behind it. A reflector in the pres-
sure field increased pressures in the plane of its surface by an
amount which depended on its shape; a flat surface caused a
doubling of the free-space values. Blade plan form 1is shown
not to be a significant parameter. The nondimensional param-
cter, tip clearance divided by propeller diameter, howerer, is
shown to be significant. As the iip clearance was decreased,
pressires in a region about as wide as one propeller radius were
greatly increased. At a constant power the pressure ampli-
tudes of the lower harmonics tended fo decrease and the higher
harmonies tended to increase with an increase in tip Mach
number. The fundamental frequency of pressure produced
by a four-blade propeller was essentially independent of tip
Mack number in the useful tip Mach rnumber range. At tip
Mack numbers near 1.00, the pressure amplitudes were not
appreciably reduced by inereasing the number of blades; how-
cver, the resulting higher frequencies of the impinging pressures
were beneficial in greatly reducing the vibration amplitude of
the wall.

INTRODUCTION

Large-amplitude fuselage-wall vibrations in the region
near the propeller plane have been experienced recently in
several experimental airplanes. Fuselage-panel failures have
occurred and great discomfort to the crew has resulted

from the noise and vibration inside the airplane. These
vibrations are known to result from the oscillating pressures
associated with the rotating propeller. Up to the present
time, however, very little information has been published
that would enable a designer to predict these pressures in the
critical region near the propeller tips.

In reference 1 Gutin has developed a theory by means of

which the sound of a propeller may be predicted. By making
several simplifying assumptions Gutin simplified the final
equations, which were then useful only at a large distance
from the propeller. The analysis presented herein is based
on Gutin’s fundamental equations without some of the’
simplifying assumptions of the original paper. The solution
obtained then makes possible the prediction of oscillating
pressures at any point in space. Its practical usefulness,
howerver, is limited to the area close to the propeller tips,
where Gutin’s simplified solution is not valid. At a larger

distance away the Gutin solution is much more convenient

to use.

Static tests were made in which several different propeller
models were used for comparison with analytical results.
These tests evaluated the effects on the free-space oscillating-
pressure distributions of such parameters as propeller diam-
eter, blade plan form, number of blades, blade loading,
tip clearance, and tip Mach number. Charts based on
experimental data were calculated to enable a designer to
estimate the average maximum free-space oscillating pres-

sures in the critical region near the plane of rotation. Com- . .
parative data were obtained at the surface of two different

simulated fuselage wall shapes to determine their effects on
the free-space pressures. The fuselage response fo these
pressures is treated herein and indicates some of the factors to
be considered in solving fuselage vibration and noise problems,

‘ - SYMBOLS
R, effective propeller radius
S distance between doublet and observer
S, distance from observer to doublets at effective

propeller radius

T,Y, 2 Cartesian system of coordinates, propeller
axis along z-axis

z',y,2 axes with origin at doublet and paralIeI to
%-, 9-, and z-axes

d ' tip clearance

D propeller diameter

r station radius
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blade width

maximum thickness of blade section
number of blades

density of air

speed of sound

tip Mach number (rotation only)

tip radius of propeller

torque

thrust

power

instantaneous pressure for a gwen harmonic

(92
P ot

free-space oscillating pressure for a given
harmonie, root-mean-square
total free-space oscillating pressure, root-

m=ca
mean-square <\/ Z Dmp® )

p for any mB value

pressure at panel surface

rotational speed, radians per second

undamped natural angular frequency of
vibration of panel, radians per second

angular frequency of sound or vibration,
radians per second

time, seconds

propeller rotational speed,
second

. T
thrust coefficient (;W)

revolutions per

W=(C+2K) Fi <Mw,—£;)

AlN=3 Bdr
F@) —J;r tfig

€m

1dT

; Q_
torque coefficient (pn2 T

power coefficient (—-ﬁjﬁ)
total free-space OSclllatlng pressure coefficient

777)
on:D?
free-space oscillating pressure .

()
pntD?

order of the harmonic

coefficient

o=t S s

phase angle between  Fourier harmonic._ of
impulse and torque component of impulse
phase angle between Fourier harmonic of
impulse and thrust component of impulse
blade angle, degrees

b angle of doublet from observer wilh respeet
to z’ axis

X angle of doublet from observer with respect
to ¥’ axis

v angle of doublet from observer with respect
to 2’ axis

¢ veloeity potential

6 angle between y-axis and radius of doublet
circle

o amplitude of impinging free wave

£ -- velocity of impinging free wave

oz et amplitude of panel vibration

I velocity of panel vibration

C. .. structural damping of wall

. . critical structural damping (2.3 w,)

K acoustical radiation rcsistauu, (ac)

M _ mass of panel per unit areg -

] o effective stiffness of panel per unit area (Mw,?)

T. transmission coefficient (&u/ &y)®

A, _ absorption coefficient

S " frequency of sound or vibration, ¢ycles per
second

fo ~ -+ - --natural frequency of panel, c) cles per sccond

A dot over a quantity indicates the first derivative with
respect to time of that quantity.

THEORY

The theory for the generation of sound by a propeller is
given by Gutin in reference 1. His basic assumptions are
that the propeller is replaced by concentraied forces or
acoustic doublets. distributed over the propvllm disk, the
strength of the doublets being a function of the torque and
thrust of the propeller. By considering only the sound at a
great distance from the propeller, Gutin could make further
simplifying assumptions which permitted a solution in terms
of Bessel functions. In the present analysis, which con-
siders the oscillating pressures near the propeller tips, the
assumptions of great distance cannot bomade. The analysis
therefore follows closely that of Gutin, with the exception
that no simplifying assumption as to distance is made.

Certain geometric relations used in the analysis are shown
in figure. 1. The propeller lies in the zy-plane and the
observer is in the zy-plane, The radius of a doublet circle
is ». The doublet under consideration is located at the
origin of the primed coordinates with angles to observer
indicated by 8, x, and ». The distance between the observer
and the doublet is S. . The coordinates of the observer in
the primed coordinate system are B —_—

z =z
y'=y—rcos f

2'=—7rsin 8
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Therefore,
S=+/z*+y2+r*—2ry cos ¢
and
r
cos 6—§,‘
_y—rcosé
€os x="—g—
cos y= =T sin 6
sy=—7z

Reference 1 shows that the velocity potential for a given
harmonie due to concentrated forces distributed over the
propeller disk is given by the following expression:

o= -irzpclf f [A(r)ei (kef—mBI-e) cos 54

a e—ikS
F(r)eiket—mBi—m} (cos x sin §—cos » cos 6)] 55 (T) dr dé

z- z'
:\
v
\ g
- 7
- X

7 Y
¢ S
S
Observer

FisTRE 1.—Deseription of coordinate system.

p=

4-\,‘71”

AMaking the substitution for the direction cosines, evaluating
—ikS’
35 (eT_)’ and dropping the small phase angles e, and 1,

gives

4;2':31 f f I:S A(Peitket—mBo-k8) |
ysin § = 113
Lol Fyerosi—mar-ss | (5 +S)drd6

When the concept of an effective radius at which the thrust
and torque are assumed to act as in reference 1 is used,
and when the following substitutions are also made as in
reference 1

Adr=2L

B
and
F (r)dr=%€
then

;:;:c]: [-zf( L y sin 9)<2LS 4—1)[(:'OS (mBohS)— -

1 sin (mB6+kS,)] dé
where R, is an effective radius of the propeller.

The instantaneous pressure for a given harmonic at any

point is given by p,=p %— Hence,
ikct
p=5 j (T +QJ sin ") (“‘ S+ 1) [cos (mBO+kS,)—
1 sin (mBO+-ES )} de (1

The absolute value of root-mean-square pressure p is glven
by the following expression:

( fz:(T +Qy sin 9) 83 [cos (mB6-+k S)+k S, sin (mB&—l—IcS,)}de}

<1 2
f_ f ”(T:JFQ” s g 5%33 [£S, cos (mB6+k S)—sin (-mBe—{—ch.)]da} )m

where

Se=+'r2+y*+R2—2R.y cos @
which is the distance from the observer to the doublets of the effective propeller eircle.
This expression for p may be written in nondimensional form as

4 1

2=

p *D 4\"51‘3 ( [}

(fz’" CrD%x | CoD% sin 6
{ 0 Sea ' Resc3

2 3, ain g° 2
(5 f (C %Dswcaﬁe%:;ﬂ 5) [cos (mBOLES)+kS, sin (mBo-+ES.)] de} +

[£S, cos (mBO+ES)—sin (mBo+kS)] de}”)"’ | @
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where p is the magnitude of the root-mean-square oscillating
pressure of a given harmonic. The quantity ;ﬁgﬁis defined. .

as the free-space oscillating-pressure caefficient and is desig-
nated p,. The total free-space oscil]ating pressure is given

by the expression 7= 2 15,,,,; where p for any mB value

m=1
is given by equation (2) and the total free-space oscillating-

. . . - D
pressure coefficient is defined as pc=;n2—D2-

APPARATUS AND METHODS

Static tests were conducted for the measurement and
analysis of the free-space pressures near the tips of five
different propeller models. Tests were made in the tip
Mach number range 0.45 to 1.00 for 2 two-blade 48-inch-
diameter round-tip propellers, a four-blade 48-inch-diameter
round- tip propeller, a two-blade 47-inch-diameter square-tip
propeller, and a two-blade 85-inch-diameter round-tip pro-
peller and for various blade angles. Comparative studies
were also made to determine thoe effects on free-space pressures
of a flat vertical wall and a curved surface which simulate
the fuselage position in the pressure field. y

Propeller models used are shown in figure 2. These modols .
were mounted in adjustable hubs to allow the blade angles
to be changed manually. The 85-inch-diameter Clark Y
propeller, the NACA '4—(3)(06.3)-06 propeller, the NACA
4-(5)(08)-03 propeller, and the square-tip propeller were all
tested as two-blade configurations. The NACA 4—(5)(08)-03
propeller was also tested as a four-blade configuration.
The square-tip propeller blade shown has the same airfoil
section as the NACA 4-(5)(08)-03 propeller and its diameter _ - : . - -
is 47 inches. The NACA designations are descriptive of the o T .
propeller. Numbers in the first group represent the pro- = . cERE L-56022
peller diameter in feet. Numbers in the first parentheses ‘ FiGrrE 2—Propeller tust blades.
represent the design lift coefficient in tenths at the 0.7 :
radius. Numbers in the second parentheses give the blade
thickness at the (.7 radius in percent chord. The last
group of numbers gives the blade solidity which is defined
as the ratio of & single blade width at the 0.7 radius to the
circumference of g circle with the same radius. Blade-form
curves for the four models tested are given in figure 3.

The test propellers were driven by a 200 horsepower
water-cooled variable-speed electric motor. Power to the
motor was measured by means of a wattmeter, and motor-
efliciency charts were used to determine power to the
propellers.

Root-mean-square oscﬂlatmg pressures were measured by
means of a commercial crystal type microphone calibrated
to read directly in dynes per square centimeter. The sensi-
tive element has. a flat frequency response in the desired
range and is approximately % inch in diameter; thus, any
distortion of the pressure field due to its presence is mini-
mized. Figure 4 shows the test arrangement for measuring
free-space pressures, Because ground reflection is considered _ ; -1
negligible for this particular setup, the pressures measured - \——
are essentially free-space pressures except in the cases where @ i _ : )
reflecting surfaces were purposely placed in the pressure ' # R £ & 1.0
field. All pressure quantities presented are considered to (&) Clark ¥ propeller
be free-space oscillating pressures unless otherwise stated. \ FiouaE 3—Blade-form carves for test propellors.
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Measurements were made at several known distances from
the propeller on lines parallel to the axis of rotation and at
the same height above ground. At all times the micro-
phone was doubly shock-mounted and when reflecting
surfaces were used the microphone was mounted separately
to keep vibrations reaching it at a minimum.

Pressure amplitudes (rms) of the first four harmonics were
measured with a harmonic wave analyzer adjusted to a band
width of 100 cycles per second.

Flat vertical and circular fuselage walls were simulated
and their effects on the magnitudes of pressures in the plane
of the walls were evaluated. Figures 5 (a) and 5 (b) show
construction of the flat vertical wall and figure 5 (¢) shows
corresponding details of the circular wall. These walls
were supported in such a way that the natural frequency of
each structure as a unit was below the frequency range of
the oscillating pressures to be measured. As first designed
the surfaces of both walls vibrated locally when excited by
the propeller frequencies. These local (panel) vibrations
were reduced in both cases to a low value by heavy longi-
tudinal reinforcement. By this method panel resonances
were removed from the frequency range where measure-
ments were to be taken.

The vertical dimension of both walls was 3 feet which
was assumed sufficient to approximate an actual fuselage for
use with a 4-foot propeller. The reinforced wooden (two
thicknesses of %-in. plywood) wall was 6 feet long and weighed
approximately 145 pounds, whereas the reinforced steel

%s-in. boiler plate) wall was 4 feet long and weighed
approximately 100 poinds.

EFFECTS OF VARIOUS PARAMETERS ON TOTAL
OSCILLATING PRESSURES o

Tip clearance.—Figure 6 illustrates the effect of tip clear-
ance d on the free-space oscillating pressure distribution.

As clearance is reduced for a given tip Mach number, pres-

sures along a line parallel to the propeller axis tend to in-
crease but the important change seems to occur in a region
approximately one propeller radius wide in the vieinity of

(a) Reinforced plywood wall (front view).
FiGuRE 5—8imulated fuselage walls'used in tests. ~

the plane of rotation. In this figure and in several suceceding
ones the horizontal seale is /D and denotes distances from
the plane of rotation; positive values denote positions ahead
of the propeller plane and negative values denote positions
behind it.

Blade loading.—Figure 7 shows the extent to which the
free-space pressure distribution may be changed, atl a con-
stant tip Mach number and clearance, by changing the blade

i’ :, ;;:-_—*'__" r .
(¢} Cireular steel wall (side view with end stiffener removed) showing reinforcement and
- microphone supports.
FiGuRE 5.—Concluded,
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loading. When the pressure ordinate is plotted as the ratio
Pe/Cp, all data at a given tip Mach number can be compared
on an equal power basis. Three different operating condi-
tions are represented since at Sy7;=8° the propeller is lightly
loaded, at 8,7;=15° it is heavily loaded but unstalled at the
tips; whereas at Sg75=20° it is stalled. For the condition
Bozs=20°, the thrust component of pressure becomes of small
importance relative to the torque component, and the pres-
sure distribution tends to peak in the plane of rotation.
For the unstalled condition where Cy is relatively large, the
free-space pressures are 2 maximum at approximately ¥ of
a diameter ahead of and behind the plane of rotation.

Power coefficient.—In figure 8 some experimental free-
space pressure coefficients p, are plotted against power
coefficient (' for four different propellers-and at two different
tip Mach numbers. At a given tip Mach number the
relation between p. and C» is seen to be approximately
linear. A comparison between the total pressures produced
by a two-blade and & four-blade propeller at equal power
coefficients is given. As is indicated in figure 8, less pressure
is produced by the four-blade propeller than by the two-
blade propeller at the same power coefficient, although at
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x/D

FIGURE 6.—Eflect of tip clearance on the free-space pressures for NACA 4-(3)(08)-03 propeller.
B=4; Bs.:s=10° M.=0.60.
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F13URE 7.—Effect of blade loading on the free-space pressure distribution for
d

NACA 4-(5)(08)-03 propeller. B=2; M:=0.60; 5=0.083.
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tip Mach number 1.00 the differences are relatively small.
Figure 8 shows that comparable data. for the NACA
4~(5)(08)-03, the NACA 4-(3)(06.3)-06, ‘and the Clark Y
propeller are in good agreement. Blade plan form and

solidity are thus not considered to be significant parameters,

In addition, for a given Af,, Cp, and d/D, pressure coefficients
for propellers of different diameter are shown to be approxi-

* mately equal. :

Tip shape.—The 3 two-blade propellers for which data
are given in figure 8 differ .in plan-form shape and in
the shank sections, but all have rounded tips. Thus it is
seen that the pressures produced are not affected very much
by small differences at the inboard stations. Two-blade
configurations of the NACA 4—(5)(08)—03 propeller and the
square-tip propeller were tested to determine the effect of
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FiGCRE 8.—Effect of power coefficient and tip Mach number on the oscillating-pressure

coefficlents of two- and four-blade propellers in the plane of rotation. %=0.042.
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tip shape.
and the only essential difference in plan form is at the tips.

Both propellers were. tested at the same blade angle and tip__

speed and at approximately the same power to get compa-
rable data. Results shown in figure 9 indicate that blade-
tip shape is not a significant parameter.

Effect of reflecting surfaces.—In order to determme the
effect that a reflecting surface has on the impinging pressures,
tests were made with o flat vertical wall and a circular-shaped
wall. These results are compared with corresponding free-
space data in figure 10, Pressures measured in the plane
of a flat vertical wall are seen to be approximately double
the free-space values. Corresponding data for a ecircular
wall indicate an increase over the free-space values, but
this increase is somewhat less than that for the flat wall.

Comparison with full-scale data.—In order to compare

these measurements with full-scale data some_check points

for the static condition were obtained from & test airplane.
Since the full-scale propeller had three blades and operated
at much larger power coefficients than the model propellers,

no direct comparison could be made. = The model data have

2400 T T T T T T
: L o——NACA 4-(5)(08)-03 |

7 \ (round~tio} propeller

2000 L3 : |
: f / \| &~——Squore=-tip propeller
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Fi6URE 9.—Effect of propeller tip shape on the free-space presstyes.
B=2; f1.n=15° M;=0.75; %=0.083.
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FiouRE 10—Eflect of reflecting surfaces in the pressure field of the NACA 4-(5)(08)-03
propeller, B=2; 8y.m=20" M,=0.60; %-—0.083.

.These propellers have identical airfoil section,.
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been extrapolated to the larger power coefficients, however,
and interpolations were made at the corresponding tip Mach
numbers. The estimates thus obtained are given in the
following table along with pertinent data from the full-sealo
tests for comparison:

A dpf:xg(élt]eg Number | Horse- | o D P, measured mﬂtﬁflh}?um
My 1o 7| of blades| power P dynesfem?) | model dain
) (dyncsfemt)
0.49 12 92 3 466 0.129 0.083 350 420
49 12.02 3 4G6 .12¢ 167 240 290
70 12.92 3 1, 500 135 083 1, 500 1, {0
8Q 12.92 3 1, 500 .136 167 1,150 978

Thus it is seen that model data may be extrapolated to
higher values of Cp with & fair amount of accuracy.

HARMONIC ANALYSES OF OSCILLATING PRESSURES

AMPLITUDES

Experiment.—Data presented thus far have shown the
behavior of total oscillating pressures as measured in free
space. The subsequent discussion illustrates the bLehavior
of each of the first four harmonics of pressure for a two-blade
propeller. .

The effect of power coefficient on the relative amplitudes
of the first four harmonics at three different tip Mach

numbers in the plane of rotation <'ﬁ=0> is shown in figure

11, Ali'hax'monics are secn to follow a straight-line relation-
ship between power coefficient C» and pressure amplitude at

Figure 11 (a) shows that, for the NACA 4-(5) (08)-03

D
two-blade propeller, the fundamental frequency is pro-
dominant at M,=0.75 and each higher harmonic is smaller
in‘amplitude. This order is completely reversed at A/,=1.00
as indicated in figure 11(c). At this speed the fundamental
has the smallest amplitude, and the higher-order harmonies
are progressively larger. At a tip Mach number of 0.90, as
shown in figure 11(b), the amplitudes are more nearly cqual
which fact indicates that at this particular speed there is a
transition between the two extremes shown in figures 11(a)
and 11(c).

The “cross over’” phenomenon shown in figure 11 for
pressures in the plane of rotation does not scem to ogeur in

At all

points investigated outside of the plane of rotation the
a.mplit,u&e was found to decrease as the opder of the hLiar-
monic increased. This result is shown in figure 12 where the
harmonic amplitude variations for three different Ll]) Mach

the tip Mach number range of the tests where %# 0.

- numbers at several points in the pressure field are given.

Comparison of theory with experiment.—In the develop-
ment of the theory the pressures at & point in space due to
the forces distributed over the propeller disk are given by a
double integration. The first integration is around the
blade path from 6=0 to 6=2= and the second integration is
along the blade radius from r=0 to »=R. For simplification
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the second integration is eliminated and all forces on the
propeller disk are assumed to be concentrated at an effective
radius. This effective radius R, is a function of the blade
thrust distribution and torque distribution and the manner
in which the forces at each blade element contribute to. the
free-space pressures at a point in space for a given har-
monic. Thus B, may differ for the various harmonics and
may be different for the thrust and torque terms of
equation (2).

The effective radius for a given harmonic was evaluated
herein by comparing the calculations with corresponding
experimental values. The calculated curves were based on
values of z/D corresponding to those shown for the experi-
mental data. Calculations in figure 13(a) for R,=0.8R
give good agreement with experiment for the propeller
operating at Bozs=15° and A,=0.75. Similar celculations
for this propeller at Byzs=10° and JM,=1.00 and for
R,=0.8R overestimate the maximum oscillating pressures. "
(See fig. 13(b).} _

In figure 14 the experimental and calculated pressures at

F ——0.125 are compared for the first three harmonics of the

D
NACA 4-(5)(08)-03 two-blade propeller at Bo1=10°.

The calculated points were obtained by using equation (2}

and the thrust and torque coefficients listed in the figure.
Equation (2) predicts pressures over the entire test range of
tip Mach numbers with the same amount of accuracy. The
deviation then appears to be essentially due to blade loading
and not due to tip Mach number. The use of B,=0.8R in
this case resulted in overestimating all pressures by about
40 percent.
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For conditions of figure 14 a variation of R, in equation (2)
resulted in & nearly uniform change in pressure amplitude
for the fundamental frequency of a two-blade propejler
throughout the given tip Mach number range. Figure 15
shows the amount of this variation for three values of R, at
z

5=—0.125. For these conditions caleulations for R,=0.7TR

most nearly duplicated the experimental results.
may be seen that the maximum pressures which usually occur
at D—-—O .125 may be predicted by using an effective radius
varying from 0.7R to 0.8R for the propeller in these tests.
This propeller is believed to be representative of high-speed
propellers. Since propellers are normally operated through
a wide range of loading condmons, a value of R, which will
be valid for the extreme case is considered most useful., . For
this particular propeller B,=0.8R is recommended to__glve
conservative calculated pressures.
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The data of figure 7 indicate that the ratio of pressure
coefficient to power coefficient is lower for the lightly loaded
and the stalled propeller than for the heavily loaded propeller.
Thus, since the value of R,=0.8R will adequately predict
the pressures for a heavily loaded propeller, it will tend to
overestimate the pressures at other operating conditions.

Doxﬁing in reference 2 shows that for a p:opollcr al a
approxnmately as the powers of the tip bp(‘ﬁd of 5, 6.5, an& 8
for mB values of 2, 4, and 6, respectively. Since the power

varies appro‘nmatel.y as the cube of the tip speed, the sound
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pressure at constant power may be seen to vary as the
powers of the tip speed of 2, 3.5, and 5 for mB=2, 4, and 6,
respectively. At a distance then, an increase in tip speed
at constant power results in an increase of sound pressure
for all harmonics. This condition does not exist for all
harmonies, however, in the region near the propeller. Figure
14 (a) shows that for a given blade angle the pressures varied
considerably less with tip speed than was observed in
reference 2. In figure 16 the experime ntal data of figure
14 (a) is plotted to show the effect of tip Mach number at
constant power on the free-space pressures of each harmonie.
For these conditions the pressure per unit power is decreased
as the tip Mach number is increased for mB=2, whereas for
mB=8 the trend seems to reverse. The pressure amplitude
for mB=4 seems to be essentially independent of tip Mach
number,
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FIGURE 13.—Frece space pressure distribution of the first barmonic o the NACA 4-(5)(08)-03

propeller. B=2; %=u.uss; R.~03R.
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Calculations in the plane of rotation for the pressure am-
plitude of the fundamental of a two-blade propeller have been
made by means of Gutin’s simplified equation and also by
equation (2) of the present report. The results obtained by
using the two methods are plotted as a ratio against d/D in

figure 17 for tip Mach numbers of 0.75 and 1.00. The Gutin o

equation is seen to underestimate the pressures at low d/D
values.

two methods is seen to change with tip Mach number and

also may be different for each harmonie and at other points

in space. These results would preclude the use of Gutin's
simplified equation with a convenient adjustment factor
since the adjustment factor would probably be different in

every case.
PHASE RELATIONS

The fuselage-wall designer should know not only the rela-
tive amplitudes of the harmonics of pressure produced by the
propeller but also something of the phase relations. Equa-

tion (1) will predict the phase between the impinging pres-

sures of any given‘harmoi;\ic at two different points in space.
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At a given d/D value the order of agreement of the .



796

The phase may also be predicted by use of equation (2). For~

given conditions equation (2) gives the pressurc at a point
in space as the product of a constant term and the square
root. of the sum of the squares of the real and imaginary com-
ponents which are, respectively, the first and last terms with-
in the large parentheses. If the algebraic values of each of
these terms are known, the phase relations may be easily
determined. B o
By this method calculations of the pressures produced
simultaneously by the fundamental frequency at two points
in space, equidistant ahead of and behind the propeller plane
and for a tip Mach number of 0.75, gave a phase difference
of 165°. Comparative measurements at these same oper-
ating conditions gave a corresponding value of 155°; thus,
the validity of equation (2) is further verified. Similar cal-
culations for the same propeller at the same tip speed but
for a larger blade-angle setting gave a phase difference of
125°. A comparison of these results indicates that the phase
angle between the pressures ahead of and behind the propel-
ler plane tends to decrease in magnitude as Cj increases with

respect to Cr. ’
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Figure 18 shows the total-pressure wave forms as reeorded
at three different points in space for five different tip Mach
numbers. These are Du Mont dual-beam cathode-ray os-
cillograph pictures of the microphone voltage output, which
is the upper trace, and a timing line of 300 ¢ycles per second.
The small vertical line on the timing line indicates the time
at which the propeller blade passes through the zy-plane and
is closest. to the microphone. The line tracing the pressure
indicates positive pressure when it moves downward and neg-
ative pressure when it moves upward, and {ime increases
from left to right. The photographs taken at a tip Mach
number of 1.00 indicate a relatively large contribution by the
higher harmonics, whereas at the lower tip Mach numbers the
low harmonics are clearly predominant. Tigure 18 is in-
cluded primarily for information in case a more detailed
analysis of these wave forms is desired. _ . .
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CHARTS FOR ESTIMATING FREE-SPACE PRESSURES

The theory given in this report is adequate for predicting
free-space oscillating pressures for any static condition. The
complexity of the method, however, makes it desirable to
provide a more convenient means of estimating these pres-
sures. The charts of figure 19 are presented for this purpose.
In contrast to the analytical method these charts do not pre-
dict the pressures at a given point but instead give a first
approximation of the maximum free-space pressure coeffi-
cients of a given harmonic near the plane of rotation of the
propeller. This information may be determined easily from
the appropriate chart, provided that the power coefficient,
tip Mach number, and tip clearance are known for a given
propeller.

The charts are based on data for unstalled conditions and
the pressures involved were determined by averaging the
maximum values measured in front of and behind the plane
of rotation at each test condition. These maximum values
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FI6URE 16.—Free-space oscillating pressura divided by power per unit disk area asa function of
tip Mach number. NACA 4-(5)(08)-03 propeller. B=2; fs.15=10%; —"5=—0.125; %=0.0S3.

usually occurred at %=i0.125. The free-space pressure

coefficients thus obtained were found to vary approximately
linearly with power coefficient as do those measured in the
plane of rotation. (See fig. 11.) Thus the thrust terms are
neglected and the charts are based on power coefficients of
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the tests. The charts may be used, however, for power .

coefficients larger than those for which data were taken.
The charts are based primarily on experimental measure-

ments at %=0.083 and on a sufficient number of measure-

ments at other d/D values to establish the attenuation curve
in figure 20. This curve was faired from a composite plot

of data which were adjusted to equal magﬁitudes at %=0.083.
Charts for values -of mB of 2, 3, 4, 5, 6, and 8 were

determined by faired data from iwo-blade and four-blade -

propellers. In equation (2) where m and B always appear
as a product, the second harmonic of a two-blade propeller
has the same strength as the fundamental of a four-blade
propeller for the same operating conditions. Because of this
fact, which has also been confirmed experimentally, and

because the fundamental frequency has been found to be. ___

predominant in this eritical region of maximum pressures,
the charts are useful for estimating pressures produced by
the fundamental frequencies of propellers which have from

two to eight blades; they may also be used to predict the pres- -

sures of harmonics in the range of values of mB from 2 to 8.
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As first illustrated in figure 12, the charts show in general
that- at tip Mach number 1.00 all harmonics have very
nearly the same maximum amplitude for comparable
operating conditions, whereas at the lower tip Mach num-
bers the lower-order harmonics are predominant. .

The effect of tip Mach number on the oscillating pressures
for a propeller operating at constant power may be esti-
mated from the relation of p., Cp, and A, in the following'

- D P
manner. Since D=5 Cp= ST
b_7® P -
P ¢ C:MD*
or

/(rDz 4c (’leI,

Thus in the charts of figure 19, lines of constant oscillating
pressure per unit propeller power are straight radial lines
through the origin. If the slope of the »,/Cp curve at a given
point is greater than the slope of a straight line from that
point to the origin as at point B in figure 19 (¢), the oscil-
lating pressure will increase with an increase in tip Mach
number for a constant power. If on the other hand the
slope of the p,/C» curve at a given point is less than the slope
of the straight line to the origin as at point A in figure 19 (c),
the free-space pressure will decrease with increasing tip
Mach number.

In general the charts of figure 19 show that al the low
values of mB, the p/Cp curves are relatively flat and the
oscillating pressures will decrease with inereasing tip Mach
number at constant power. For the higher mB values the
reverse .is true. This effect has already been indieated in
figure 16 and is further shown in figure 21 where the ratio
2./CplM,;, which is proportional to the oscillating pressures
per unit propeller power, is plotted for various values of
mB as a function of tip Mach number. Data in figure 21
are faired data taken from the charts of figure 19.

Figure 21 shows that for values of mB less than 4 the os-
cillating pressure per unit power deercases with increased tip
Mach number. The conclusion may be drawn that the
pressure due to the fundamental mode of excitation for a
four-blade propeller is essentially independent of tip Mach
number when the power is held constant. Hence changing
the tip Mach number will not materially affect the primary
modes of fuselage vibration. It may be noted, however,

“that the large increase in pressure amplitude of the higher

harmonics with increase in tip Mach number will gleallv
increase the noise levels in the fuselage.

FUSELAGE RESPONSE TO OSCILLATING PRESSURES

VIBRATION

Theory and experiments have been discussed which make
possible the prediction of the oscillating pressures acting on
the fuselage. The present section deals with the fusclage
response to these pressures and indicates some of the fuctors
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FiGTRE 21.—Effect oftip Mach number at constant power on the pressure amplitudes of the

fundamental {requencies of various propellers. %=o.10.

to be considered in solving the problem of fuselage vibration
and noise. Since references 3 and 4 consider in detail the
acoustical treatment for aireraft fuselages, no experiments
were made on soundproofing. Some smplitude and fre-
quency measurements, however, were made on vibration of
two panels which were subjected to pressure impulses from
propellers.

Experimental data.—The test panels were designed pri-
marily as reflectors and were not intended for use in vi-
bration studies. Thus, heavy construction was used in order
to minimize the effect of panel vibration on the pressure
measurements. The panel weights were approximately 8
pounds per square foot for the flat wall and approximately
5.5 pounds per square foot for the circular wall. These
weights are appreciably greater than the normal fuselage
weight of about 1 pound per square foot. Despite these
weight differences the vibration data taken during the course
of these tests are of interest in that they indicate the way in
which the vibration amplitudes are aﬂ'ected by panel
resonances.

Figure 22 (a) gives the vibration response of the flat
wooden panel at the position of greatest vibration amplitude
both before and after reinforcing. As a result of excitation
by a two-blade propeller a resonance peak occurred at 130
cycles per second. Reinforcing the panel removed the
resonant condition from the operating range.
curve for the ecircular steel panel (fig. 22 (b)) shows a narrow
resonance peak at 107 cycles per second. The steel shell
has a more narrow frequency response than the wooden
panel and thus indicates less damping. The peak amplitude
af the circular wall is less than that for the flat wall even

. all the responses to the particular sound wave.

The response -

801

though the flat wall had more damping. Thusit is indicated
that pressures on the circular wall are less than those on the
flat wall. This condition is further indicated by the curves
for the reinforced walls, because the flat wall has about
twice the amplitude of the circular shell. Figures 22 (a)
and 22 (b) indicate the necessity of removing any large wall
resonances from the operating range. They also indicate
that a curved wall has less vibration amplitude than a fiat
wall for comparable tip clearance and operating conditions.

‘Response of the reinforced flat wooden panel to excitation . '

by a four-blade propeller, which absorbs slightly less power
than the two-blade propeller of figures 22 (a) and 22 (b), is
shown in figure 22 (¢). A number of small resonance peaks
appear in this figure; however, the over-all value of the
amplitude is considerably less than for the two-blade pro-
peller. Even though the pressures associzted with the four-
blade propeller at high tip Mach numbers will be nearly equal

in amplitude to those for a two-blade propeller, the corre-

sponding wall vibration amplitudes may be much smaller.

. This reduction is attributable to the greater wall inertia at

the higher frequencies produced by the four-blade propeller.

Comparison of experimental data with theory.—A body
such as a fuselage has an infinite number of vibration modes.
The determination of the response. to a forced vibration load
such as a sound wave would require the vector summation of
Such a
procedure is difficult, if not impossible. It has been found
experimentally that at a particular exciting frequency the
response of a body is predominantly determined by the
vibration mode which is near the exciting frequencies. If

the excitation is far from a resonant condition the amplitude .

of vibration may be estimated by considering only the inertia
(See p. 219, reference 5.} As a first =

or mass of the panel.
approximation, the natural frequency of the panel may be

assumed to be zero and the material damping and radiation  _

resistance may be neglected. Under such assumptions, the
response of a panel to an oscillating force may be simply
calculated as (p. 62, reference 6)

El}ﬁ_‘zu'wl - (3)

where £ is the displacement from each side of the neutral
position, p, is the pressure measured at the panel surface, M/

is the mass of panel per unit ares, and «; is the angular

frequency of sound in radians per second Calculations of
the vibration amplitudes of the test panels for the funda-
mental propeller frequenc1es have been made by equation (3)
and are plotted in figure 22. The maximum pressures

measured for the first harmonic near the plane of rotation and
corrected for wall reflection were used in these calculations.
Wall pressures used were 2 times free-space values for the flat
surface and 1.5 times free-space values for the curved surface,

as indicated by results given in figure 10. Total ampli_tud_e_____-”__

is 2 &e.
ment with the vibration amplitudes measured for the rein-

The calculated values are seen to be in good agree- ~ °

forced panel except where resonant peaks occur (fig. 22).
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Since the calculations were_made for an assumed natural
frequency of zero, the calculated curve does not indicate the
response at resonance. A simple caleulation such as this
may be useful for predicting vibration amplitudes for heavy
walls far from resonance. ' '

- For conventional fuselage walls, which weigh much less
than those.tested, the acoustical radiation resistance and
dampimg cannot be neglected. A more refined method for
calculating the response of an idealized pancl and which
gives the effect of rigidity, panel damping, and acoustical
radiation resistance is given by equation 7 (b) of the ap-
pendix. This equation gives the vibration amplitude if the
structural damping, mass, and natural frequency of the
panel are known. Caleulations for 2 resonant condition by
equation 7 (b) have been made for comparison with experi-
imental results and these values are shown in figure 22 (a).

For t.héée calculations, fy=130 cycles per second, —g=0.02
= '_ e

(estimated from shape of resonance peak), and the weight
of the panel was 7 pounds per square foot. Equation7 (b)
shows that for lower values of the mass and frequeney the
acoustical radiation resistance becomes of greater importance,
A conventional fuselage will therefore have greater damping

_and the resonances will not be so sharply peaked as in

figures 22 (a) and 22 (b).

.Effect of fuselage parameters on fuselage vibration.—The
appendix shows that the panel vibration amplitude of the
fuselage is a function of oscillating pressure and frequency
as well as of mass, rigidity, and damping of the structure.
Rigidity is effective in reducing low-frequency vibrations,
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mass is the most effective in reducing high-frequency vibra-
tions, and wall damping is the most effective in reducing the
amplitude of the resonant peaks.

The present tests showed that the panel vibrated predom-
inantly at the fundamental or lowest excitation frequency of
the propeller. This fact has also been found to be the case
for an airplane fuselage. Since rigidity is the most effective
at the low frequencies, wall vibration may be reduced by
increasing wall rigidity, provided, of course, that the resonant
condition is far enough removed from the range in which
the propeller operates. This increase in wall rigidity was
accomplished for the test panels by means of reinforcements
which raised the panel resonance frequency to a value
higher than the fundamental excitation frequency. This
procedure necessarily increases the possibility that the panel
may be in resonance with the higher harmonics of the
propeller. An inspection of figure 22 (¢} shows that when
the reinforced wooden panel was excited by the four-blade
propeller several small resonances occurred at higher fre-
quencies; however, these small resonances seemed to be of
little importance.

Since the propeller has numerous exciting harmonics and
the walls have numerous modes of vibration, eliminating all
resonant conditions is impractical. Iteis therefore desirable
to apply a damping material to the walls to reduce the
amplitude of the resonant peaks.

The first section of the present report shows that as the
tip Mach number is increased, more of the pressure energy
goes into the higher harmonies. As indicated in the ap-
pendix, the mass of the wall becomes most effective in reduc-~
ing wall vibration at the higher frequencies. The wall must
therefore have sufficient mass to prevent excessive vibration
at the high frequencies which predominate at high tip speeds.

SOUND LEVELS IN FUSELAGE

The difference in pressure level of sound as it passes into an
enclosure such as a fuselage is given by reference 3 as

Attenuation in decibels=10 Iogm(l +—%)

where 4, is the absorption coefficient in the enclosure and
T, is the transmission coefficient of sound through the walls.
The transmission is given by the square of the ratio of wall
vibration amplitude to the amplitude of the external sound
wave., (See appendix.) The lower the wall vibration for a
given external excitation, the lower is the transmission, and,
hence, the greater the sound reduction. Such reduction is
possible only if A. is greater than zero; that is, only if sound-
absorbing material is present in the fuselage can the sound
intensity inside be less than the intensity outside. It may
also be noted from the equation for attenuation that even
though A, be unity (its maximum value}, the sound reduction
will not be appreciable unless T, is quite small. In the
interest of crew comfort, a nominal value of absorption and
a low value of transmission are therefore necessary.

The designer may reduce sound pressures in the fuselage:

(1) by moving the engines outboard to increase tip clearance,
(2) by increasing the number of blades, (3) by choosing the
optimum fuselage shape, (4) by increasing fuselage rigidity,
mass, and damping, and (5) by applvmg sound-absorbing
msterial.
certain range of conditions.

CONCLUSIONS

Free-space oscillating-pressure measurements for static
conditions near the propeller tips (tip Mach number range
0.45 to 1.00) for five different propellers indicate the follow-
ing conclusions:

1. Pressures measured on a line parallel to the propeller
axis are increased as tip clearance is decreased; however,
only the pressures in a region one-half radius ahead of the
plane of rotation to one-half radius behind it are greatly
increased.

2. At a constant power the pressure amplitudes of the
lower harmonics tend to decrease and the higher harmonics
tend to increase with an increasein tip \Iach number. The
fundamental frequency of pressure produced by a four-blade

~ Each of these variables is most effective over a

propeller is essentially independent of tip Mach number in

the useful tip Mach number range.

3. Blade plan form and solidity do not seem to be sig- -

nificant parameters. Tip clearance divided by propeller
diameter is shown to be significant.

4. At all tip Mach numbers the four-blade propeller pro-
duced smaller pressures than the two-blade propeller for the
same ‘power coefficient. At low tip Mach numbers these
differences are large, whereas at tip Mach number 1.00,

where a large amount of energy appears in the higher har-

monics, they are relatively small.

5. A flat vertical wall in the pressure field approximately
doubles the free-space pressures in the plane of the wall; a
circular wall also increases the pressures but by a Iesser
amount.

6. Pressures of the fundamental frequency which impinge
on the fuselage wall in front of the propeller plane tend to
be out of phase with those behind the propeller plane.

7. At a corstant power coefficient and at tip Mach num-
bers near 1.00, the pressure amplitudes are not appreciably
reduced by increasing the number of blades; however, the
resulting lugher frequencies of the impinging pressures are
beneficial in greatly reducing the vibration amplitude of
the wall.

8. Oscillating pressures and their phase relations at any
point in space may be predicted satisfactorily by the theory
in this report. This analysis is primarily for use in the region
near the propeller where the Gutin s1mp11ﬁed solution is
not valid.

LANGLEY AERONAUTICAL LABORATORY,
NarioNan ApvisorY COMMITTEE FOR AERONAUTICS,
Laxerey Fieup, Va., February 18, 1949.



APPENDIX
RESPONSE OF AN IDEALIZED PANEL TO A PLANE SOUND WAVE

The response of an idealized panel to a plane sound wave
is given in reference 5, page 220. The panel is assumed to
move as an infinite, thin, but rigid piston that can vibrate
as & whole under the action of elastic and damping restraints.
The equations are reproduced here in somewhat modified
form to show the effect of rigidity, mass, and damping on
the response of a panel.

The vibration velocity of the panel is given by the follow-
ing equation:
2K eiwlt
e

Epgetort=

Substituting K Ep = p and Eg=1iw &y gives

2p6im1t ’
foyl —, e o s - il
ot toy W : ®)

where S
W=(C+2K)+1 (M’wl—wi)
1
The absolute value is given by

27 e 2z (6)
oy CH2B (M=)

Utilizing the value of the eritical damping for single- degree
systems gives (p. 50, reference 6) .

Ci=2Mao,

£y 217__ .
o \/(2 ?,O- ]l:{w,.+2K)2+(Zin;——-

When s=Muw,? is substituted, equation (7a) may be written
as

o (78)

R e e

For the case of zero damping, radiation resistance, and stiff-
ness, equation (7a) reduces to

2
£°3=ﬂ glﬂ L . (8)
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This is the same equation as equation (3) in text with the
exception of the factor 2. The pressure used in equation (3)
is the pressure at the panel surface which for & large plane
panel is double the free-space pressure because of reflection.
The equations in this appendix are based on the frec-space
pressure of the incident wave.

The resonant condition of the panel is given by w,=uw,.
For this condition the amplitude of vibration is given by

.. P . -~ (9)

Fpp=+
g Mo2+Kao,

The relation of the panel vibration amplitude to air amplitude
ab resonance may be written as

“Eos_ 1 R
£ ﬂfwn
oA

-(10}

Equation (10) shows that, if the structural dnmﬁing 7C—:~
€

is zero, the panel amplitude at resonance is equal Lo the
amplitude of the impinging sound wave. The term 'g‘ -—-——"‘II;’ =
must be greater than unity for the damping to make an
appreciable difference in the amplitude. The value of this
quantity for a typical fusclage having TQ—O 10, M =0.8
¢

grams per centimeter?, »,=2760=376 radians per sccond,
and K=pc=42 grams per centimeter®sccond is

C Mo, (0.10)(0.80)(376)
T F 1 =0.70

Equation (10) shows that the damping is effective in reduc-
ing resonant peaks for high values of w, (high rigidity), mass,
and damping coefficients. This cquation indicates that
damping reduces the amplitude of the higher responses but
is not very effective in reducing the low-frequency peaks.

The transmission coefficient T, of sound energy through
a wall is given by the square of the ratio of wall amplituda
to the amplitude of the bmpinging wave. The reciprocal
of the transmission is given for the case of zero structursl
damping in refercnee 5 as

2
. (A'le——s-
=g ]
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where [ is the mass of the wall per unit area, s is the stiff-
ness (s=2>Xw,? where «, is natural frequency of panel}, «;
is angular frequency of impinging sound, and ¢ is velocity
of sound in air.

This equation may be written for air at stendard condi-
tions (15° C and 760 mm. of Hg) as

1056 ——es (11)
7056+ 4x2f2 012 (12

)

S A

where f; is the frequency of the impinging sounds, fo, the
natural frequency of the fuselage, and Af, the mass per unit
area of the fuselage.

T.=
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